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Introduction

e Goal is to perform inference on summaries of heterogenous effect of
an endogenous treatment in the presence of a instrument with many
controls

D e {O, 1} is an endogenous binary treatment,

Y, is an outcome, possibly indexed by u € U

Z € {0,1} is a binary instrument,

f(X) is a dictionary of controls, where we allow p = dim f(X) > n,
which will have to be selected in data-driven fashion

> Conditioning on covariates for identification or for efficiency reasons

e Example: Y, = wealth or Y, = 1(wealth < v), D = 401(k)
participation, Z = offer of 401(k) by an employer, believed to be as
good as randomly assigned conditional on covariates X

> Dictionary f(X) is generated by taking transformations and
interactions of X=age, income, family size, education, etc.



e Local Effects ( Local = Compliers, people affected by Z).

> Local Average Treatment Effect (LATE),
> Local Quantile Treatment Effect (LQTE)

e Local Effects on the Treated (Treated Compliers).

e In the absence of endogeneity, Z = D, drop "Local” above.

Contribution: we provide honest confidence bands for all of the
above parameters, based on " post-selection-robust” procedures,
where Lasso is used to select terms of the dictionary that explain
the regression functions and the propensity scores.

Also simultaneous bands for curves= function-valued parameters.




Example of Post-Selection-Robust in Action

Example with p ~ 700, n =~ 10000
Impact of 401(K) on Quantiles of Total Wealth

Dollars (1991)
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Key Structural Parameters

e Assume standard LATE assumptions of Imbens and Angrist.

e Average potential outcome in treatment state d for the compliers =:
Local average structural function (LASF):

 Ep{Ep[14(D)Ya| Z = 1,X] — Ep[1a(D)Y, | Z = 0,X]}
M) = TR TENI.(D) [ Z =L X —Erdy(D) [ 20X} ¢ €101

where 1,(D) := 1(D = d) is the indicator function

o Local average treatment effect (LATE) with Y, =Y

Oy (1) — 0y (0)



Key Structural Parameters

e Defining the outcome variable as Y, = 1(Y < u) gives local
distribution structural function (LDSF):

utr— Qyu(d)

Local quantile structural function (LQSF) is obtained by inversion:

T 0y (1,d):=influeR:0y,(d) > 1},

T-quantile of potential outcome in treatment state d for compliers

Take differences to get LQTEs

T— 0y (1,1) =0y (7,0), T€QC(01)

Can define “on the treated” versions



Link to Key Reduced Form Parameters

All these structural 6-parameters are smooth transforms of reduced-form
a-parameters, for example,

Oy, (d) = ‘de(D)Yu(l) - ‘de(D)YU(O)
' a1,(p)(1) — a1,(p) (0)

where for z € {0, 1},

for

or

ay(z) :=Eplgv(z, X)], gv(z,x) :=Ep|[V|Z =12 X = x|,

vVey,:= {lo(D) Y, ll(D) Yy, lo(D), ll(D)}, uel.

] , mz(z,x):=Ep[1,(2)|X = x],



Rephrasing High-Dimensional Problem to Reduced Forms

f's = smooth functional(a's)

a's = smooth functional(g's or mz)

f's = smooth functional(a's)

a's = smooth functional(g's or mz)

How to estimate
g'sor my

with p > n so that inference on 0 is honest = uniformly valid over a
“large” class of models?



Naive Approach

o Make approximate sparsity assumption on the regression function

Zf ﬁVZj

where [By . ;| decay at some speed after sorting the coefficients in
decreasing order. Then estimate gy, using modern high-dimensional
methods, LASSO or post-LASSO.

e Obtain the "natural” plug-in estimator:
n
Ry(z) =Y 8v(z Xi)/n
i=1
e Problem: Despite averaging, @y (z) is not y/n-consistent and

Vn(@y(z) —a(z)) 4 N(0,Q).

> Regularization (by selection or shrinkage) causes too much "omitted”
variable bias, causing the averaging estimator not to be \/n-consistent

D> Lack of uniformity in inference wrt the DGP = "not honest”



Naive Approach has Very Poor Inference Quality

Exogenous example (Z = D)
6 = ATE

Test Hp : 6 = true value

Nominal size: 5%
Naive rp(0.05)

Y =D (Y XB) ¢ 41
=1

D=1{(YXf;) ¢ +V >0}
=1

B;j =1/4% n= 100, p = 200
7~ N(0,1), V~ N(O,1)
X ~ N(0, Toeplitz).




Our Solution: Use Doubly Robust Scores + Lasso or
Post-Lasso to Estimate Regressions and Propensity Scores

@ Assume approximate sparsity for gy and mz, and estimate both via
post-LASSO or LASSO to deal with p > n. Under our assumption
we can estimate gy and my at rates o(n~1/4).

® Estimate the reduced form a-parameters using doubly robust efficient
scores to protect against crude estimation of gy and mz. The
estimators are y/n-consistent and semi-parametrically efficient.

© Estimate structural 6-parameters via the plug-in rule and derive their
asymptotics via functional delta method

@ Multiplier bootstrap method (resampling the scores) to make
inference on the reduced form and structural parameters. Very fast.

Theorem (Validity of Post-Selection-Robust Procedure)

The main result is that this works uniformly for a large class of DGPs,

thereby providing efficient estimators and honest confidence intervals for
LATE, LDTE, LQTE, and other effects.




Inference Quality After Model Selection

Not Doubly Robust Doubly Robust

Naive rp(0.05) Proposed rp(0.05)




The Bigger Picture: Use Orthogonal Scores

Suppose identification is achieved via the moment condition
Epyp(W, ag, ho) =0,
where ag is the parameter of interest, and hg is a nuisance function

e The score function ¥ has orthogonality property w.r.t. h if

ahEpl[J(W,(Xo,h) - =0
=ho

where d;, computes a functional derivative operator w.r.t. h.

e Orthogonality reduces the dependency on hg and allows the use of
highly non-regular, “crude” plug-in estimators of hy (converging to hg
at rates o(n~1/4)).

e Orthogonality is equivalent to double-robustness in many cases.



Orthogonal or Doubly Robust Score for a-parameters

e Orthogonal score function for ay (z)

L.(2)(V - g(z X))

m(z, X) Te(z.X) —a

W (W g m) =

e It combines regression and propensity score reweighing approaches:
Robins and Rotnizky (95) and Hahn (98).

e When evaluated at the true parameter values — l/)‘i‘/Z(W, a, gy, mz) —
this score is the semi-parametrically efficient influence function for

ay(z)
e Provides orthogonality with respect to h = (g, m) at hg = (gy, mz)

* In p>> n settings, ¢\, , used in ATE estimation by Belloni,
Chernozhukov, and Hansen (13, ReStud) and Farrell (13).



More on Orthogonal Score Functions

e Long history in statistics and econometrics

>

>

In low-dimensional parametric settings, it was used by Neyman (56, 79)
to deal with crudely estimated nuisance parameters

Newey (90, 94), Andrews (94), Linton (96), and van der Vaart (98)
used orthogonality in semi parametric problems

In p > n settings, Belloni, Chen, Chernozhukov, and Hansen (2012)
first used orthogonality in the context of IV models.

In the paper "Program Evaluation with High-Dimensional Data”
(ArXiv, 2013) we construct honest confidence bands for generic
smooth and nonsmooth moment problems with orthogonal score
functions, not just the program evaluation settings.



Conclusion

1. Don’t use naive inference based on LASSO-based
estimation of regression only (or propensity score
only). It does fail to provide honest confidence sets.

2. Do use inference based on double robust scores, which
combines nicely with Lasso-based estimation of both
the regression and the propensity scores.



References:

e ‘“Inference on treatment effects after selection amongst
high-dimensional controls”
ArXiv 2011, Review of Economic Studies, 2013

Partially linear regression 4+ exogenous TE models

e “Program Evaluation with High-Dimensional Data”
ArXiv 2013, Econometrica R&R

endogenous TE models + general orthogonal score problems



Appendix

The rest is technical Appendix.



Summary: Inference Quality After Model Selection

Not Double Robust Double Robust

Naive rp(0.05) Proposed rp(0.05)




Step-1: LASSO/Post-LASSO Estimators of gy and my

Result 1: Under approximate sparsity assumptions, namely when gy and
myz are well-approximated by s < n unknown terms amongst f(X),
LASSO and Post-LASSO estimators of gy and mz attain the
“near-oracle” rate \/slog p/n for each V €V, uniformly in u € U, they
are also sparse with dimension of stochastic order s uniformly in u € U.

e Result 1 applies to a continuum of LS and logit LASSO/Post-LASSO
regressions

o Choice of penalty level in LASSO needs to account for simultaneous
estimation over V € V,, uec U

e Results for continuum were only available for quantile regression
LASSO/Post-LASSO (Belloni and Chernozhukov, AoS, 11)

e Covers f1-penalized distribution regression process



Approximate Sparsity of gy and my

Let f(X) = (G(X))J’;l be a vector of transformations of X, p = p, > n

We use series approximations for gy, and mz

gv(z,x) = Av(f(z,x)Bv)+ry, f(z,x)=[zf(x),(1—-2)f(x)"7,
mz(1,x) = Az(f(x)'Bz)+rz, mz(0,x) =1—mz(1,x),

where ry and rz are the approximation errors and A\ and A7 are known link
functions. Assume approximate sparsity, namely that:

@ There exists s = s, < n such that, for all V € {Vu Tu € L{},
1Bvllo+1Bzllo <

where || - ||g denotes the number of non-zero elements

@® Approximation errors are smaller than conjectured estimation error:
2111/2 2111/2
{Ep[rg]}Y? + {Ep[rz]}/2 < Vs/n.

Extends series regression by letting relevant terms to be unknown



LASSO/Post-LASSO Estimation of gy and my

Let (W;)?_; be a random sample of W and [E,, denote the empirical expectation
over this sample.

LASSO and Post-LASSO estimator are given respectively by
1 Py e arg min (Ea[M(V, F(Z,X)VB)]+ 2]
BER?P ' Y n ’

2. By € argﬁfgﬂi{gp (lEn[M(Vv f(Z,X)B):Bj=0.j & SUPp[Bv])

M(-) is objective function of M-estimator (OLS or logit or probit)

¥ = diag(h, ..., 7,,) is a matrix of data-dependent loadings

Choice of A needs to account for potential simultaneous estimation of a
continuum of LASSO regressions over V € V,, u e U

(Post-LASSO) Refit selected model to reduce attenuation bias due to
regularization

Similar procedure to obtain BZ and Bz



Choice of Penalty A

e Need to control selection errors uniformly over u € U

e With a high probability

IM(V, F(X)'Bv)
9p

Y 1lE, {

‘ ‘ '
[e9)

e Similar strategy to Bickel et al (09) for singleton ¢ and Belloni and
Chernozhukov (11, AoS) for £1-penalized QR processes

A
— > sup
n ueld

e As a practical way to implement this choice, we propose

A =cy/n® (1 —v/{2pn%}),

where v = 0(1), ¢ > 1, and d, =dimU (e.g., c =11, v = .1/ logn)

e Corresponds to Belloni, Chernozhukov, and Hansen (14) when d, =0



Step-2: Continuum of Reduced-Form Estimators

Let gv and mz be LASSO/Post-LASSO estimators of gy and myz

ForVeV,zeZ

1.(2)(V —&v(z, X))

ty(z) =, 22, X)

+§v(Z,X) ,

where [E, denotes the empirical expectation

We apply this procedure to each variable V € V, and z € Z to
obtain the estimator:

Pu = ({av(o)vav(l)})ku of pu = ({“V(O)v“V(l)})vevu

We then stack into reduced-form empirical and estimand processes

ﬁ: (ﬁU)UGZ/I and p = (pu)ueu



Uniform Asymptotic Gaussianity of Reduced Form Process

We show that \/n(p — p) is asymptotically Gaussian in £ ()% with influence
function

Ya(W) = (g} o (W), ¢ 1 (W)} vey,
Result 2. Under s2 Iogz(p V n) Iog2 n/n — 0 and other regularity conditions,
V(@ —p) ~ Zp = (Gpyh) yey in £2°(U)%, uniformly in P € P,
where Gp denotes the P-Brownian bridge, and Pp, is a “rich” set of data

generating processes P that includes cases where perfect model selection is
impossible theoretically.

o Covers pointwise normality as a special case
e Set of DGPs P, is weakly increasing in n

e Derivation needs to deal with non Donsker function classes to accommodate
high-dimensional estimation of nuisance functions




Multiplier Bootstrap (Gine and Zinn, 84)

e Let (i), are i.i.d. copies of ¢ which are independently distributed
from the data (W;)"_; and whose distribution does not depend on P

e We also impose that E[¢] =0, E[¢?] =1, Elexp(|¢])] < o0

e Examples of ¢ include
(a) ¢ =& —1, where & is standard exponential random variable,
(b) & =N, where N is standard normal random variable,

(c) E=N1/V2+ (N22 —1)/2, N1 1L N3, Mammen multiplier
We define a bootstrap draw of p* = (p})ucy Vvia
VP, —pu) = n 2 Y Eglu(wo),
i=1

where P is a plug-in estimators of the influence function




Uniform Consistency of Multiplier Bootstrap

Result 3. We establish that that the bootstrap law \/n(p* — p) is
uniformly asymptotically valid, namely in the metric space {™(U)%,

\/E(ﬁ* - .3) ~»pg Zp, uniformly in P € P,

where ~~ g denotes the convergence of the bootstrap law in probability
conditional on the data

o Computationally very efficient since it does not involve recomputing
the influence function ¢f, (and nuisance functions)

e Previously used in Econometrics in low-dimensional settings by B.
Hansen (96) and Kline and Santos (12)



Step-3: Estimators of Structural Parameters

o All structural parameters we consider are smooth transformations of
reduced-form parameters:

A= (Ag)geq, Where Ag = ¢(p)(q), g€ Q

e The structural parameters may themselves carry an index g € Q that
can be different from u, e.g. LQTE are indexed by g =T € (0, 1)

e We define the estimators and their bootstrap versions via the plug-in
principle:

A = (Bg)gear Bq:=9(P)(q).

A = (Bygear By=9 (") (q).



Uniform Asymptotic Gaussianity and Bootstrap
Consistency for Estimators of Structural Parameters

Result 4. We establish that these estimators are asymptotically Gaussian
V(A = A) ~ ¢ (Zp) in £2(Q), uniformly in P € Py,
where h— ¢, (h) = (¢,4(h))qeo is the "uniform” Hadamard derivative.

Result 5. The bootstrap consistently estimates the large sample distribution of
A uniformly in P € Pp:

V(A =A%) ~g ¢ (Zp) in £°(Q), uniformly in P € P

e Strengthens Hadamard differentiability and functional delta method to
handle uniformity in P

e Result 5 complements Romano and Shaikh (11)

e Construct uniform confidence bands and test functional hypotheses on A




