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The presentation is based on:

” Uniform Post Selection Inference for LAD Regression and
Other Z-estimation problems”
Oberwolfach, 2012; ArXiv, 2013; published by Biometrika, 2014

1. Develop uniformly valid confidence regions for a target regression
coefficient in a high-dimensional sparse median regression model
(extends our earlier work in ArXiv 2010, 2011).
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The presentation is based on:

” Uniform Post Selection Inference for LAD Regression and
Other Z-estimation problems”
Oberwolfach, 2012; ArXiv, 2013; published by Biometrika, 2014

1. Develop uniformly valid confidence regions for a target regression
coefficient in a high-dimensional sparse median regression model
(extends our earlier work in ArXiv 2010, 2011).

2. New methods are based on Z-estimation using scores that are
Neyman-orthogonalized with respect to perturbations of nuisance
parameters.

3. The estimator of a target regression coefficient is root-n consistent
and asymptotically normal, uniformly with respect to the
underlying sparse model, and is semi-parametrically efficient.

4. Extend methods and results to general Z-estimation problems with
orthogonal scores and many target parameters p; > n, and
construct joint confidence rectangles on all target coefficients and
control Family-Wise Error Rate.
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1. Z-problems like mean, median, logistic regressions and the
associated scores

2. Problems with naive plug-in inference (where we plug-in
regularized or post-selection estimators)

3. Problems can be fixed by using Neyman-orthogonal scores,
which differ from original scores in most problems

4. Generalization to many target coefficients
5. Literature: orthogonal scores vs. debiasing

6. Conclusion
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1. Z-problems

» Consider examples with y; response, d; the target regressor,
and x; covariates, with p = dim(x;) > n

» Least squares projection:
E[(y; — diao — x{Bo)(di, x])] = 0
> LAD regression:
E[{1(y; < diao + xBo) — 1/2}(d;, x)] = 0
» Logistic Regression:
E[{y; — Mdiao + xiBo) }wi(dj, x;)'] = 0,

where A(t) = exp(t)/{1 + exp(t)}, w; = 1/A;(1 — A;), and
A = /\(d,'Ozo + Xf,@o).
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1. Z-problems

» In all cases have the Z-problem (focusing on a subset of
equations that identify g given fp):

E[o( W, a Bo )] =0
data  target parameter high—dim nuisance parameter

with non-orthogonal scores (check!):

OE[(W.a0.B)]|_ #0

» Can we use plug-in estimators (3, based on regularization via
penalization or selection, to form Z-estimators of ag?

En[@(Wa 6‘73)] =0
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1. Z-problems

» In all cases have the Z-problem (focusing on a subset of
equations that identify g given fp):

E[o( W, a Bo )] =0
data  target parameter high—dim nuisance parameter

with non-orthogonal scores (check!):

OE[(W.a0.B)]|_ #0

» Can we use plug-in estimators (3, based on regularization via
penalization or selection, to form Z-estimators of ag?

En[@(Wa 6‘73)] =0

» The answer is NO!
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2. Problems with naive plug-in inference: MC Example

>

In this simulation we used: p =200, n=100, ag=.5
yi = diag + xiBo + i, G ~ N(0,1)
di = x/v0 +vj, vi~ N(0,1)
> approximately sparse model
|Boj| o< 1/72, 1ol o¢ 1/

— so can use L1-penalization
» R? =5 in each equation

> regressors are correlated Gaussians:

x ~ N(0,%), X, = (0.5)U4.
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2.a. Distribution of The Naive Plug-in Z-Estimator

p =200 and n =100

(the picture is roughly the same for median and mean problems)

0
-8 -7 6 -5 -4 -3 -2 - 0o 1 2 3 4 5 6 7 8

= badly biased, misleading confidence intervals;
predicted by “impossibility theorems” in Leeb and Pétscher (2009)
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Regularization Bias of The Naive Plug-in Z-Estimator

> B is a plug-in for By; bias in estimating equations:
=0
\/EIESO(W7 xp, 6)|@:B = \/EIEtP( Wa p, 50)

FOEAW.00.8)| V(B — o)+ O(VallB — ol)

=:/—o00

=:11—0

» [l — 0 under sparsity conditions

1Bollo <'s = o(+/n/ log p)

or approximate sparsity (more generally) since
Vnl|B = Bol* < v/n(s/n) log p = o(1).
> | — oo generally, since
V(B — o) ~ \/slog p — 0,

» due to non-regularity of /3, arising due to regularization via
penalization or selection.
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3. Solution: Solve Z-problems with Orthogonal Scores

» In all cases, it is possible to construct Z-problems

P, o o IS0

data target parameter hijgh—dim nuisance parameter

with Neyman-orthogonal (or “immunized”) scores :

ME[H(W, a0, )] =0.

» Then we can simply use plug-in estimators 7}, based on
regularization via penalization or selection, to form
Z-estimators of ag:

Eq [y (W, &,7)] = 0.
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3. Solution: Solve Z-problems with Orthogonal Scores

» In all cases, it is possible to construct Z-problems

P, o o IS0

data target parameter hijgh—dim nuisance parameter

with Neyman-orthogonal (or “immunized”) scores :

ME[H(W, a0, )] =0.

» Then we can simply use plug-in estimators 7}, based on
regularization via penalization or selection, to form
Z-estimators of ag:

Eq [y (W, &,7)] = 0.

> Note that ¢ # 1) + extra nuisance parameters!
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3.a. Distribution of the Z-Estimator with Orthogonal

Scores

p =200, n = 100

0
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— low bias, accurate confidence intervals

obtained in a series of our papers, ArXiv, 2010, 2011, ...
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3.b. Regularization Bias of The Orthogonal Plug-in

/-Estimator

» Expand the bias in estimating equations:
=0
VAEG(W, ao,1)|,_, = VAEG(W, a0, 10)
+ 0, EU(W,a0,m)| v/l = m0) + OVl = o)

=:11—0
=:/1=0

» [l — 0 under sparsity conditions

[10]lo < s = o(+/n/ log p)

or approximate sparsity (more generally) since
Vvl = ol S V/n(s/n)log p = o(1).
» | =0 by Neyman orthogonality.



3c. Theoretical result |

APPROXIMATE SPARSITY: after sorting absolute values of
components of 79 decay fast enough:

molgy <A77, a>1.

Theorem (BCK, Informal Statement)

Uniformly within a class of approximately sparse models
with restricted isometry conditions

o 1V/n(d& — ag) ~ N(0,1),

where o2 is conventional variance formula for Z-estimators

assuming no is known. If the orthogonal score is efficient score,
then & is semi-parametrically efficient.
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3.d. Neyman-Orthogonal Scores

>> In low-dimensional parametric settings, it was used by Neyman
(56, 79) to deal with crudely estimated nuisance parameters.
Frisch-Waugh-Lovell partialling out goes back to the 30s.

> Newey (1990, 1994), Van der Vaart (1990), Andrews (1994),
Robins and Rotnitzky (1995), and Linton (1996) used
orthogonality in semi parametric problems.

> For p > n settings, Belloni, Chernozhukov, and Hansen
(ArXiv 2010a,b) first used Neyman-orthogonality in the
context of IV models. The 79 was the parameter of the
optimal instrument function, estimated by Lasso and
OLS-post-Lasso methods
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3.f. Examples of Orthogonal Scores: Least Squares

> Least squares:
(Wi, a,m0) = {5 — dia}d;,

yi = X!mo + Vi, IE[}ZIXI] =0,
di = xjno + d;, IE[dix;]] = 0.

Thus the orthogonal score is constructed by Frisch-Waugh
partialling out from y; and d;. Here

Mo ‘= (77/10a 7750)/

can be estimated by sparsity based methods, e.g.
OLS-post-Lasso.
Semi-parametrically efficient under homoscedasticity.

» Reference: Belloni, Chernozhukov, Hansen (ArXiv, 2011a,b).
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3.f. Examples of Orthogonal Scores: LAD regression

» LAD regression:

V(Wi a,mo) = {1(yi < div + x{Bo) — 1/2}d},
where

fid; = fixiyo + di, E[d;fx] =0,

fi := f,.1d;, (dico + X[ Bo | di, x7).

Here
770 = (fy;|d;,X,‘(‘)7 a’07 1867’)/6)/

can be estimated by sparsity based methods, by L1-penalized
LAD and by OLS-post-Lasso. Semi-parametrically efficient.

» Reference: Belloni, Chernozhukov, Kato (ArXiv, 2013a,b).
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3.f. Examples of Orthogonal Scores: Logistic regression

> Logistic regression,
(Wi, o, m0) = {yi — N(djex + x{50) }di //wi,
Vwidi = ywixtyo + dj, E[y/widixi] = 0,

w; = A(diag + X/ 80) (1 — A(dicxo + X; o))
Here
o := (g, By 70)’

can be estimated by sparsity based methods, by L1-penalized
logistic regression and by OLS-post-Lasso.
Semi-parametrically efficient.

» Reference: Belloni, Chernozhukov, Ying (ArXiv, 2013).
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4. Generalization: Many Target Parameters

» Consider many Z-problems

E[y;( W , o njo ) =0
~~ ~—~ —~—

data target parameter high—dim nuisance parameter

with Neyman-orthogonal (or “immunized") scores:

On E[; (W, ajo, mj)] =0

nj="jo

j=1...p1>n

» The can simply use plug-in estimators 7);, based on
regularization via penalization or selection, to form
Z-estimators of ajo:

]En[wj(W,Oéj,nj)] = 07 J = ]_, ceey P1.



4. Generalization: Many Target Parameters

Theorem (BCK, Informal Statement)

Uniformly within a class of approximately sparse models with
restricted isometry conditions holding uniformly in j =1,.... p; and
(log p1)" = o(n),

sup [P({o,' V(&) — ajo) 12y € R) = P(N € R)| =0,

R rectangles in RP1

where afn is conventional variance formula for Z-estimators assuming njo

is known, and N is the normal random py-vector that has mean zero and
matches the large sample covariance function of {ajglﬁ(dj — o)}
Moreover, we can estimate P(N' € R) by Multiplier Bootstrap.

» These results allow construction of simultaneous confidence
rectangles on all target coefficients as well as control of the
family-wise-error rate (FWER) in hypothesis testing.

> Rely on Gaussian Approximation Results and Multiplier Bootstrap
proposed in Chernozhukov, Chetverikov, Kato (ArXiv 2012, 2013).
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5. Literature: Neyman-Orthogonal Scores vs. Debiasing

> ArXiv 2010-2011 — use of orthogonal scores linear models

a. Belloni, Chernozhukov, Hansen (ArXiv, 2010a, 2010b ,2011a,
2011b): use OLS-post-Lasso methods to estimate nuisance
parameters in instrumental and mean regression;

b. Zhang and Zhang (ArXiv, 2011): introduces debiasing + use
Lasso methods to estimate nuisance parameters in mean
regression;

» ArXiv 2013-2014 — non-linear models

c. Belloni, Chernozhukov, Kato (ArXiv, 2013), Belloni,
Chernozhukov, Wang(ArXiv, 2013);

d. Javanmard and Montanari (ArXiv, 2013 a,b);
van de Geer and co-authors (ArXiv, 2013);

e. Han Liu and co-authors (ArXiv 2014)

» [b,d] introduce de-biasing of an initial estimator &. We can interpret
“debiased” estimators= Bickel's “one-step” correction of an initial
estimator in Z-problems with Neyman-orthogonal scores. They are
first-order-equivalent to our estimators.
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Conclusion

0
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Without Orthogonalization With Orthogonalization
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